Growth cone turning induced by direct local modification of microtubule dynamics.

نویسندگان

  • Kenneth B Buck
  • James Q Zheng
چکیده

Pathfinding by nerve growth cones depends on attractive and repulsive turning in response to a variety of guidance cues. Here we present direct evidence to demonstrate an essential and instructive role for microtubules (MTs) in growth cone steering. First, both growth cone attraction and repulsion induced by diffusible cues in culture can be completely blocked by low concentrations of drugs that specifically inhibit dynamic microtubule ends in the growth cone. Second, direct focal photoactivated release of the microtubule-stabilizing drug taxol on one side of the growth cone consistently induces attraction (turning toward the site of application). Using the focal pipette application method, we also show that local MT stabilization by taxol induces growth cone attraction, whereas local MT destabilization by the microtubule-disrupting drug nocodazole induces repulsion (turning away). Finally, the microtubule-initiated attractive turning requires the participation of the actin cytoskeleton: local microtubule stabilization induces preferential protrusion of lamellipodia before the attractive turning, and the attraction can be abolished by inhibition of either actin polymerization or the Rho family GTPases. Together, these results demonstrate a novel steering mechanism for growth cones in which local and selective modification of dynamic microtubules can initiate and instruct directional steering. With the subsequent concerted activity of the actin cytoskeleton, this microtubule-initiated mechanism provides the growth cone with the additional means to efficiently navigate through its environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focal loss of actin bundles causes microtubule redistribution and growth cone turning

It is commonly believed that growth cone turning during pathfinding is initiated by reorganization of actin filaments in response to guidance cues, which then affects microtubule structure to complete the turning process. However, a major unanswered question is how changes in actin cytoskeleton are induced by guidance cues and how these changes are then translated into microtubule rearrangement...

متن کامل

Microtubule Dynamics Are Necessary for Src Family Kinase-Dependent Growth Cone Steering

Dynamic microtubules explore the peripheral (P) growth cone domain using F actin bundles as polymerization guides. Microtubule dynamics are necessary for growth cone guidance; however, mechanisms of microtubule reorganization during growth cone turning are not well understood. Here, we address these issues by analyzing growth cone steering events in vitro, evoked by beads derivatized with the I...

متن کامل

Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue.

Growth cone turning is an important mechanism for changing the direction of neurite elongation during development of the nervous system. Our previous study indicated that actin filament bundles at the leading margin direct the distal microtubular cytoskeleton as growth cones turn to avoid substratum-bound chondroitin sulfate proteoglycan. Here, we investigated the role of microtubule dynamics i...

متن کامل

Spatial and temporal sensing limits of microtubule polarization in neuronal growth cones by intracellular gradients and forces.

Neuronal growth cones are the most sensitive among eukaryotic cells in responding to directional chemical cues. Although a dynamic microtubule cytoskeleton has been shown to be essential for growth-cone turning, the precise nature of coupling of the spatial cue with microtubule polarization is less understood. Here we present a computational model of microtubule polarization in a turning neuron...

متن کامل

Touch and go: guidance cues signal to the growth cone cytoskeleton.

Growth cones, the highly motile tips of growing axons, guide axons to their targets by responding to molecular cues. Growth cone behaviors such as advancing, retracting, turning and branching are driven by the dynamics and reorganization of the actin and microtubule cytoskeleton through signaling pathways linked to guidance cue receptors. Actin filaments play a major part in growth cone motilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 2002